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ABSTRACT 

An ordinary differential equation with stochastic parameters, called SPR_SODE model for the spread of dengue 

fever was considered to analyze further. It was defined the set of stochastic equations and a reproductive number 0R .           

This 0R was defined for mosquito as well as human parameters. In this paper, the asymptotic stability of the disease-free 

equilibrium point of the above said model was discussed. 
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INTRODUCTION 

Dengue is one of the diseases which is in worldwide and comes under infectious diseases. The work of a carrier 

(i.e) the medium for transmitting is performed by the mosquito, “Aedes Ageypti [4, Gantmacher.F.R., 1977]. There are so 

many models for such infectious diseases. We need a separate model for such a special disease like dengue fever for better 

results. In this work, the SPR_SODE model [2,3, Dhevarajan.S, et.al, 2013] (SPR_Stochastic Ordinary differential model) 

is considered to analyze further. Asymptotically stable equilibrium points or equilibrium solutions can be defined as the 

equilibrium solutions in which solutions that start “near” them move toward the equilibrium solution [1, Boyd et.al, 1999]. 

SPR_SODE MODEL 

All the notions of SPR_SODE model [2,3, Dhevarajan.S, et.al, 2013] are taken for further analysis without any 

change and the same model is given below. 
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By converting (A) to fractional quantities and denoting each scaled population by small letters, one can get, 
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Now, 0R  can be defined as,0 .hm mhR = ℜ ℜ ,                                                                                                        (C) 

where hmℜ  and mhℜ  can be written in mathematical notation as,  
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ASYMPTOTIC STABILITY  

The Jacobian of the dengue model (B) evaluated at nodisx  is of the form 
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Now our interest to find out the eigen values of (1). Let the eigen values beiλ , i=1, 2, 3,..,7. The fourth and 

seventh columns of the jacobian given by (1) corresponding to the total human and mosquito populations, contain only the 

diagonal terms. The diagonal terms of the Jacobian (1) provide two of the eigen values say, 1λ and 2λ  and can be defined 

by,  
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Let us conclude from the earlier assumption that, both 1 2andλ λ are always negative since 
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Now, we have to find out the signs of the solutions of (4). The Liénard – Chipart criterion [6] gives, any of the 

following four conditions is necessary and sufficient in order that all roots of a polynomial 

n n-1 
n n-1 1 0a x  + a x +... + a x + a  = 0with real coefficients have negative real parts: 

n n-2 1 3a >0,  a >0,......  > 0,  > 0,...∆ ∆ ; n n-2 2 4a >0,  a >0,......  > 0, > 0 ,...∆ ∆ ; 

n n-1 n-3 1 3a >0,  a >0,a >0,......  > 0, > 0 ,...∆ ∆ ; n n-1 n-3 2 1a >0,  a >0,a >0,......  > 0, > 0 ,...∆ ∆ ., where 

i∆ be the principal minors with order i, with i = 1, 2, 3,…,n. For the use the Routh–Hurwitz criterion, First it is to prove 

that when 0R  < 1, all roots of (4) have negative real part. The Routh–Hurwitz criterion [5, section 1.6-6(b)] states that for 

a real algebraic equation 

n n-1 
n n-1 1 0a x  + a x +... + a x + a  = 0                                                                                                                  (5) 
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Given an > 0, all roots have negative real part if and only if n 0a = V , n-1 1a = V , 

n-1 n n-1
n-1 n

2 3 n-3 n-2 n-1 n
n-3 n-2

n-5 n-4 n-3 0

a a 0 a ... 0
a a

V = , = a a a , ... = ... ... ...
a a

a a a 0 ... a

V V  are all positive, with i a  = 0for i < 0. This is true if 

and only if all ai and either all even-numbered Vk or all odd-numbered Vk are positive (6, Li´enard–Chipart test). By Korn 

and Korn [5] in section 1.6-6(c) state Descartes’s rule of sign as the number of positive real roots of a real algebraic 

equation (5) is equal to the number; Na, of sign changes in the sequence, n n-1 1 0a ,a ,... , a , a  of coefficients, where the 

departure terms are ignored, or it is less than Na by a positive even integer.  

Now, it is to show that when 0R  < 1, all the coefficients, Wi, of the characteristic equation (4), and V0, V2, and 

V4, are positive, hence by the Routh–Hurwitz criterion one can say that, all the eigen values of (1) have negative real part. 

Now, it is to show that when 0R  > 1, there is one and only one sign change in the sequence 5 4 0, ...    W W W hence, by 

Descartes’s rule of sign along with positive real part, there is only one eigen value, and also the disease free equilibrium 

point is unstable. The expression for
0
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sequence, 5 4 3 2 1W , W , W , W , W  has exactly one sign change. Thus, by Descartes’s rule of sign, (4) has one positive 

real root when 0R  > 1.  

CONCLUSIONS 

A stochastic ordinary differential equation called SPR_SODE model for the spread of dengue fever is analyzed. 

For our model, the disease-free equilibrium point, nodisx , is locally asymptotically stable if 0R  < 1 and unstable              

if 0R  > 1. If 0R  < 1, on average each infected individual infects less than one other individual, and the disease dies out.  

If 0R > 1, on average each infected individual, infects more than one other individual, so one can expect the disease to 

spread. The Jacobian of (B) at nodisx  has one eigen value equal to 0 at 0R  = 1. 
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